
1 
 

A Curios Case Of Solar System Surface Gravities Clustering 
 

Eugene V. Bobukh 

Abstract 

The values of Log(g) for 14 largest Solar System planetary bodies appear to form four notable clusters, 

clearly separated by three large gaps. 

Under the assumption of Log(g) inherent continuity, two statistical methods were applied to assess the 

likelihood of producing the same or stronger clustering with 14 randomly chosen gravity values. Both 

arrived at the answer of p = 8*10-4. With giant planets excluded from the analysis, that probability 

remained small at p ≈ (5-6)*10-3. 

Several other distributions – such as known exoplanetary gravities and masses/radii/densities of Solar 

System bodies – were tested with the same methods. None of them conclusively demonstrated 

“unlikelihood” of clustering stronger than p = 0.05. 

While confirming that the perceived Solar System surface gravities clustering is likely real, these results 

could only be partially explained. 

Introduction 

Planetary surface gravity is a complex parameter depending on planetary mass and radius, which in turn 

depend on body’s composition and formation history. As a variable of a complex origin, it might be 

intuitively expected to follow a continuous distribution, with no prominent gaps or spikes. 

Yet the Log(g) distribution of large Solar System planetary bodies appears to form four prominent clusters, 

well separated by large gaps: 
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Figure 1 Gravities distribution for Solar System bodies with g > 0.8 m/s2, log scale 

Those groups consist of: 

• Group 1: Moon, Io, Europa, Ganymede, Callisto, and Titan – loosely centered around 1.6 m/s2 

• Group 2: Mercury and Mars, at 3.7 m/s2 

• Group 3: Venus, Earth, Saturn1, Uranus, Neptune – near 10 m/s2 

• Group 4: Jupiter with gravity of 25 m/s2 

It is understood that these are objects of very different nature and formation mode. But that makes it 

even more surprising to find gravity values so similar within (for example) Group 3 across bodies of rather 

diverse masses and compositions. And while surface gravity is not a primary parameter for describing a 

planetary body, it is still a physical variable, and as such, it is legitimate to study its distribution, at least 

formally. 

For instance, one can ask a question: is that clustering real, or is it merely a visual appearance? And how 

likely is such grouping to arise by a pure chance, under the assumption of Log(g) inherent continuity? 

Two statistical methods were implemented to address those questions, described in the subsequent 

sections. 

Experiment Procedure 

1. Introduce quantitative measure of clustering quality 

2. Apply that measure to real objects being studied (e.g., Solar System gravities) 

3. Generate large number of random “test” values on similar range 

                                                           
1 For bodies with large difference between polar and equatorial gravities, average is used. This simplification, while 
not physically sound, does not seem to affect the results significantly. 
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4. Measure their clustering quality 

5. Count occurrences where “test” clustering quality is better than that of the real objects 

6. The rate of those occurrences quantifies the probability of the real clustering being a result of a 

random fluctuation 

1. Introduce quantitative measure of clustering quality 

Multiple and often incompatible methods for assessing clustering quality are known (e.g., [140, 160]) 

across data analysis industry. That is reflective of the fact that the very definition of “quality” is often 

subjective and domain-dependent, leaving no universal method to apply well across all contexts. 

In the spirit of that understanding, it often makes sense to develop measures tailored for specific 

problems, keeping in mind industry practices as a reference. 

In this case, two measures were introduced, further referred as Gaps Area (GA) and Blur Tolerance (BT). 

The expectation was that the use of two independent approaches would help validate consistency and 

correctness of the result. 

Gaps Area GA  

This measure, which could be viewed as a variation of Davies–Bouldin index [140], is defined as the 

average size of inter-cluster areas relative to the total span of values considered: 

𝐺𝐴 =
∑ ( min

𝑔 ∈ 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑐

𝑔 − max
𝑔 ∈ 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑐−1

𝑔) /(𝐾 − 1)𝐾
𝑐=1

max 𝑔 − min 𝑔
 

Here c enumerates clusters in the order of increasing gravity, and K is the total number of them. The 

definition is scale-invariant so there is no dependency on the choice of the modeling range.  

To be applied, it requires that objects are clustered first using one of the standard methods. In this case, 

hierarchical agglomerative clustering with minimal (or “single-linkage”) merging [40, 50] criteria was 

chosen for its simplicity and ease of results interpretation, especially in one-dimensional case. The 

algorithm performs as following: 

1. Initially, each element (i.e., each gravity value) is a cluster of its own. 

2. For each pair of clusters A and B, distance D(A, B) is calculated. D(A, B) is defined here as the 

smallest distance between any element in A and any element in B. In one-dimensional case, this 

is simply Min(B) – Max(A) if B is to the right of A. 

3. The pair of clusters with the least mutual distance is merged into a new cluster. 

4. Steps 2-3 are repeated until the desired number of clusters K is reached. 

Defined that way, clustering is “good” when objects sit in a few closely packed groups with large inter-

cluster gaps:  
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Figure 2. “Good” objects clustering (large inter-cluster gray gaps, tight green clustered groups) 

The opposite of that are nearly-uniformly spaced values that produce relatively little gray area and thus 

lower clustering scores: 

 

Figure 3. “Poor” clustering quality: small gray area, large and loose green groups. 

While simple, this definition becomes degenerative in the presence of multiple single-element clusters, 

so an alternative definition is needed to augment it. 

Blur Tolerance measure BT  

This approach builds on the ideas behind Kernel density estimation [50, 150] and assesses how discernable 

clusters are under poor observations/measurement conditions. 

Starting with a set of gravity values gi, it converts them to a continuous function F(g) via the blur 

transformation: 

𝐹(𝑔; 𝑟) = ∑ 𝑒𝑥𝑝(− (𝐿𝑜𝑔(𝑔) − 𝐿𝑜𝑔(𝑔𝑖))2 𝑟2⁄ )

𝑖
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Intuitively, that mimics image quality loss caused by imperfect observation. The tighter and more 

pronounced the clusters are, the more blurring/smoothing their “image” can sustain while preserving 

enough contrast to distinguish the clusters: 

 

 

Figure 4. F(g) (red curve) for blur radius r = 0.1 (above) and r = 0.2 (below) for Solar System gravities, arbitrary units. For r = 0.1 
(above), four clusters are distinguishable. At increased blur r = 0.2 (below), only two groups remain detectable over the imposed 
minimum contrast ratio of 2:1. 

The blur radius r (relative to the total gravities span) that preserves at least 2:1 contrast between all K 

clusters in the group is defined as Blur Tolerance clustering quality measure (BT): 
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𝐵𝑇 =
𝑟

max 𝑔 − min 𝑔
 

This definition is also scale-invariant. 

This metric produces only clustering quality, but not the actual clusters; however, those could be easily 

recognized visually by looking at the F(g) function. 

GA vs BT? 

While these two measures often reasonably agree, sometimes their assessments of clustering quality 

could conflict, resulting in the estimates of unlikelihood differing by orders of magnitude. A good example 

of that is Kepler-102 system [110]. 

Per Gap Area metric, Kepler-102 gravities make three strong (p = 0.006) clusters: 

 

Figure 2. Gaps Area clustering of Kepler-102 

Yet Blur Tolerance sees nothing extraordinary here (p = 0.34, the “blur” function is shown in green): 



7 
 

 

Figure 5.Blur Tolerance clustering of Kepler-102 gravities 

How such disagreements should be reconciled? 

Gaps Area measure is concerned only with the amount of space left between the clusters. If one keeps 

making the central cluster on Figure 5 narrower, they would get progressively better clustering scores, 

even though very little physically changes through such a progression. This mental experiment suggests 

that Gap Area metric becomes degenerative when cluster size is smaller than the uncertainties of the 

measurement. It would produce elevated scores in such a scenario, as well as when there are multiple 

single-element “clusters” in the result. 

Blur Tolerance approach is more robust against those issues and its results should be favored in most 

conflicts, especially when clusters are tight or singular. At the same time, it also has a bias of its own, 

whereas it slightly favors periodically spaced clusters over non-periodic ones. 

Overall, Blur Tolerance was found to be more robust than Gap Area and is treated as the primary scoring 

method throughout this work. Results obtained with Gap Area are typically discarded when there are two 

or more singular clusters in the output. 

2. Apply clustering quality measures to real objects being studied 

Target cluster counts K in the range of 2-8 were used to avoid accidentally picking subjectively appealing 

but unjustified count.  

The data sets used were: 

Solar System gravities [10, 60] 

Primary Set: surface gravities of 14 largest Solar System bodies with g > 1 m/s2. This included Jupiter, 

Neptune, Saturn, Earth, Uranus, Venus, Mars, Mercury, Io, Moon, Ganymede, Titan, Europa, and Callisto. 
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No Giants Set. Same as the previous, with giant planets removed (i.e., with no Jupiter, Saturn, Uranus, 

and Neptune). The set was considered to test whether the transition from rocky to gaseous planets is the 

reason sufficient to explain the apparent clustering. 

Small Bodies. This set consists of 15 small Solar System bodies with 0.1 m/s2 < g < 1 m/s2 that are not 

expected to demonstrate significant grouping. It contains Triton, Eris, Pluto, Haumea, Titania, Oberon, 

Ceres, Charon, Ariel, Rhea, Umbriel, Dione, Iapetus, Tethys, and Quaoar in it. This set was used to test if 

the approach detects any clusters where (at least from the standpoint of visual inspection) we do not 

expect them. 

Extrasolar Systems gravities 

Four extrasolar systems with five or more planets were run through the pipeline to see whether similar 

kind of gravities clustering is observed in them. Gravity values were obtained from mass and radii values 

in [110]. Only transit detections (to have direct radii data) were included. Measurement uncertainties 

were ignored (which arguably might have led to significant biases). While clustering up to K = 4 was 

produced, most likely only K = 2 results are reliable. 

The data set included four systems: Kepler-11, Kepler-20, Kepler-62, and Kepler-102. 

Extrasolar High Precision Gravities 

This consisted of twenty extrasolar planets across different systems with surface gravities known to within 

25% precision (per [110]). 

Solar System non-gravity parameters 

These additional data sets were used primarily for testing and/or evaluation purposes. All parameters 

were clustered in the logarithmic space (e.g., Log(M), Log(R), etc.). 

Solar System radii for the same 14 bodies as for gravities analysis. In theory, no significant clustering is 

expected in this case.  

Solar System masses, which similarly should’ve exposed no clustering either. 

Solar System bodies’ distances to the Sun for the same 14 bodies as for gravity set. This set might show 

some weak clustering at higher values of K since giant’s satellites have the same solar distances as their 

parent bodies. 

Solar System densities for the same 14 bodies as for the gravities set. A weak form of clustering separating 

gas giants from rocky planets and (possibly) icy satellites may be expected. 

3. Generate large number T of random values sets 

Each set would contain N values randomly drawn from a selected distribution, where N is the number of 

real objects studied (e.g., 14 for Solar System gravities). 

To be clear, no physical processes (like planets formation) are modeled here. All “gravities” were just 

random numbers from a certain fixed distribution. 
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As a null hypothesis, assume that groups and gaps are random fluctuations 

In other words, that no physical process in the Solar System is expected to produce any clustering in 

gravities distribution. 

Of course, even a quick glance at the Solar System suggests this is not the case. Formation processes of 

rocky planets, giant planets, and their satellites are likely different [30] and completely smooth transition 

between the properties of those classes is not necessarily expected. By explicitly ignoring these – known 

and unknown – effects, we seek to quantify their impact on clustering of gravities, via the comparison of 

grouping produced by the null hypothesis vs. the observations. 

Draw test “gravities” from a log-uniform2 distribution 

Obviously, the reality is more complex. Even if all planetary bodies in the Solar Systems had formed via 

the same process, the resulting gravities distribution probably would not have been that simple. 

Just as a consideration, if masses distribution follows the power law of 

𝑑𝑁

𝑑𝑚
∝ 𝑚−𝑎 

Then, at least for smaller objects with negligible pressure-induced compression, the distribution of objects 

count over L = Log(g) would be exponential: 

𝑑𝑁

𝑑𝐿
∝ 𝑒3(1−𝑎)𝐿 

A log-uniform distribution is a special case of that for a = 1. 

However, I feared that accounting for such fine details would complicate the model and introduce 

additional poorly known free parameters, so decided to stay with less precise but more robust log-uniform 

distribution. After all, most realistic choices of continuous distributions should not result in prominent and 

multiple clusters. A log-uniform distribution seems like a reasonable first approximation to assert that 

statement. 

4. Measure clustering quality of each test set 

That was done using both BT and GA measures. 

 

5. Count cases where test clustering quality is better than that of the real objects 

And derive the “likelihood” of the observed clustering, simply as: 

𝑝 =
𝐶𝑜𝑢𝑛𝑡 𝑜𝑓 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔 𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠 𝑤𝑖𝑡ℎ 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑛𝑜 𝑤𝑜𝑟𝑠𝑒 𝑡ℎ𝑎𝑛 𝑡ℎ𝑒 𝑆𝑜𝑙𝑎𝑟 𝑆𝑦𝑠𝑡𝑒𝑚′𝑠

𝑇𝑟𝑖𝑎𝑙𝑠
 

The statistical error is crudely estimated as 

                                                           
2 This is the distribution of variable X such that Log(X) has a uniform distribution on a specified range, with zero 
probability density outside of that range 
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𝐸𝑟𝑟~√𝑝 ∗ (1 − 𝑝) ∗ 𝑇𝑟𝑖𝑎𝑙𝑠 

(Under the expectation that at least for small values, p should have roughly binomial distribution) 

That probability is calculated for both Gap Area and Blur Tolerance approaches. Whenever a strong 

disagreement is seen, it is reconciled per the guidelines in the metrics definition section (typically, Blur 

Tolerance wins). 

Results 

For each of the set grouped into K clusters, the probability to generate the same or better clustering in T 

= 18,000 attempts was calculated for each value of K. 

Solar System gravities 

Table 1. Probabilities of generating random gravities with clustering better than observed in the Solar System 

Clusters 
count K 

Primary Set, 
Blur 
Tolerance 

Primary Set, 
Gaps Area 

No Giants  
Set, Blur 
Tolerance 

No Giants Set, 
Gaps Area 

Small Bodies, 
Blur 
Tolerance 

Small Bodies 
Gaps Area 

2 0.16711 ± 
0.00278 

0.22428 ± 
0.00311 

0.25006 ± 
0.00323 

0.12206 ± 
0.00244 

0.74456 ± 
0.00325 

0.40622 ± 
0.00366 

3 0.11606 ± 
0.00239 

0.04011 ± 
0.00146 

0.00511 ± 
0.00053 

0.00589 ± 
0.00057 

0.14150 ± 
0.00260 

0.35383 ± 
0.00356 

4 0.00083 ± 
0.00022 

0.00078 ± 
0.00021 

0.99661 ± 
0.00043 

0.02500 ± 
0.00116 

0.86261 ± 
0.00257 

0.51267 ± 
0.00373 

5 0.99911 ± 
0.00022 

0.00283 ± 
0.00040 

0.98756 ± 
0.00083 

0.06161 ± 
0.00179 

0.75494 ± 
0.00321 

0.56861 ± 
0.00369 

6 0.99906 ± 
0.00023 

0.01000 ± 
0.00074 

    0.57244 ± 
0.00369 

0.59261 ± 
0.00366 

7 0.99044 ± 
0.00073 

0.01644 ± 
0.00095 

    0.23589 ± 
0.00316 

0.53389 ± 
0.00372 

 

The minimal p-value in each column is marked with bold font. Gray indicates discarded Gaps Area 

measures (typically due to clusters being too tight or containing single elements). 

The immediate interpretation of these results is the following: 

1. K = 4 indeed appears to be the most natural cluster count for 14 heaviest Solar System bodies 

gravities, while the case of K = 3 cannot be seriously discussed due to metrics disagreement. 

2. The probability to generate such clustering for K = 4 out of log-uniform gravities distribution by 

random chance is low (p ≈ 8*10-4) 

3. Without giant planets, there are still three significant clusters observed, with the probability of 

them being a statistical noise of p = (5-6)*10-3 

4. Gravities clustering in Solar System bodies with 0.1 m/s2 < g < 1 m/s2 is nearly nonexistent (the 

best p = 0.14 is for K = 3) 



11 
 

Solar System non-gravity parameters 

Table 2. Probabilities of randomly generating parameters that produce clustering better than observed in the Solar System  

Clusters 
count K 

Distance 
to the 
Sun, BT 

Distance 
to the 
Sun, GA 

Radius, 
BT 

Radius, 
GA 

Mass, BT Mass, GA Density, 
BT 

Density, 
GA 

2 0.43472 ± 
0.00369 

0.24633 ± 
0.00321 

0.24000 ± 
0.00318 

0.06611 ± 
0.00185 

0.64378 ± 
0.00357 

0.38217 ± 
0.00362 

0.64606 ± 
0.00356 

0.17439 ± 
0.00283 

3 0.86911 ± 
0.00251 

0.31561 ± 
0.00346 

0.13439 ± 
0.00254 

0.02922 ± 
0.00126 

0.24522 ± 
0.00321 

0.31078 ± 
0.00345 

0.05289 ± 
0.00167 

0.10500 ± 
0.00228 

4 0.43328 ± 
0.00369 

0.27333 ± 
0.00332 

0.11128 ± 
0.00234 

0.01022 ± 
0.00075 

0.28378 ± 
0.00336 

0.19900 ± 
0.00298 

0.06789 ± 
0.00187 

0.08594 ± 
0.00209 

5 0.24611 ± 
0.00321 

0.13689 ± 
0.00256 

0.87300 ± 
0.00248 

0.01583 ± 
0.00093 

0.37739 ± 
0.00361 

0.15367 ± 
0.00269 

0.05350 ± 
0.00168 

0.02633 ± 
0.00119 

6 0.17311 ± 
0.00282 

0.05883 ± 
0.00175 

0.91200 ± 
0.00211 

0.01094 ± 
0.00078 

0.81156 ± 
0.00291 

0.16550 ± 
0.00277 

0.96667 ± 
0.00134 

0.04039 ± 
0.00147 

7 0.14183 ± 
0.00260 

0.00528 ± 
0.00054 

0.93611 ± 
0.00182 

0.01050 ± 
0.00076 

0.65778 ± 
0.00354 

0.15000 ± 
0.00266 

0.87217 ± 
0.00249 

0.04178 ± 
0.00149 

 

Immediate interpretation: 

1. Weak clustering (p = 0.03) is seen for radii separating large planets from the rest of the bodies 

and satellites 

2. No clustering of masses is observed (p = 0.245), implicitly supporting the expectation of 

continuous mass distribution in the Solar System. 

3. Three weak density clusters (p = 0.05) are found, separating rocky compositions from 

gaseous/icy ones, and from Saturn:

 

Overall, these outcomes meet the expectations with respect to Solar System bodies’ radii, masses, 

densities, and solar distances distribution. 
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Gravities within Extrasolar Planetary Systems 

Table 3. Probabilities of generating random gravities with clustering better than observed in reality 

Clusters 
count K 

Kepler-
11, BT 

Kepler-
11, GA 

Kepler-
20, BT 

Kepler-
20, GA 

Kepler-
62, BT 

Kepler-
62, GA 

Kepler-
102, BT 

Kepler-
102, GA 

2 0.05400 ± 
0.00168 

0.00833 ± 
0.00068 

0.51111 ± 
0.00373 

0.43317 ± 
0.00369 

0.19950 ± 
0.00298 

0.20761 ± 
0.00302 

0.42144 ± 
0.00368 

0.19806 ± 
0.00297 

3 0.97928 ± 
0.00106 

0.03167 ± 
0.00131 

0.38478 ± 
0.00363 

0.40617 ± 
0.00366 

0.74483 ± 
0.00325 

0.31911 ± 
0.00347 

0.33267 ± 
0.00351 

0.01000 ± 
0.00074 

4 0.96356 ± 
0.00140 

0.07778 ± 
0.00200 

0.37833 ± 
0.00361 

0.13122 ± 
0.00252 

0.53250 ± 
0.00372 

0.02561 ± 
0.00118 

0.99428 ± 
0.00056 

0.13711 ± 
0.00256 

 

No gravity clustering comparable to that of the Solar System’s is seen except for Kepler-11. However, its 

low p-value is due to Kepler-11 g. The mass of that planet is provided as 0.95+0
-0.95 Mjup [110], offering an 

upper bound estimate only, almost certainly being an overestimate. Clustering analysis has simply flagged 

that large uncertainty. 

Extrasolar Planets with gravities known within 25% precision 

Table 4. Probabilities of generating random gravities with clustering better than observed in reality for High Precision Set 

Clusters 
count K 

Blur Tolerance Gaps Area 

2 0.15461 ± 
0.00269 

0.00378 ± 
0.00046 

3 0.41833 ± 
0.00368 

0.01883 ± 
0.00101 

4 0.91256 ± 
0.00211 

0.03694 ± 
0.00141 

5 0.99506 ± 
0.00052 

0.07039 ± 
0.00191 

6 0.99756 ± 
0.00037 

0.14433 ± 
0.00262 

7 0.98817 ± 
0.00081 

0.21700 ± 
0.00307 

8 0.94272  ±  
0.00173 

0.29217 ± 
0.00339 

 

The presence of an obvious outlier EPIC 219388192 b causes strong discrepancy between BT and GA 

measures, making it difficult to reason about this data set. Visual inspection of Log(g)  distribution suggests 

that BT figures should probably be favored, with overall conclusion of the lack of significant clustering: 
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Conclusions & Discussion 

The probability to generate same or better gravities clustering than that of the 14 largest Solar System 

bodies by a pure chance is p = 8*10-4 (under the assumptions and simplifications made). 

Neither other physical properties of the Solar System tested, nor exoplanet systems with known gravities 

have confidently demonstrated clustering comparable to the observed in the Solar System gravities. 

Therefore, these gaps in gravities distribution are likely real and as such may deserve an attempt at 

explanation. What those explanations could be? 

The tight grouping around ~10 m/s2 is probably attributable to Solar System environment. It seems that 

within the range of the Solar System conditions any rocky body significantly heavier than Earth is likely to 

accrete sizable quantities of Hydrogen and Helium. That would result in density decrease and some form 

of a flat “shelf” on gravity vs. mass dependence [20, 25, and 80]; Uranus and Neptune seemingly reside 

there. Thus, rocky-to-gaseous composition transition is, at least partially, responsible for one cluster in 

the Solar System gravities.  

What if we exclude giant planets from the analysis? 

There are still two prominent gaps and three clusters in this case: 
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Figure 6. Gravities clustering in Solar System bodies with g > 0.8 m/s2, with giant planets excluded 

The same statistical testing suggests that they are possibly real, too. The probability of the opposite is 

p = (5-6)*10-3. 

How could that clustering be explained? Relying more on the common sense rather than significant 

knowledge of Planetary Science, I can put forward the following potential causes, roughly in the order of 

descending believability: 

 Stochastic 

1. A purely random fluctuation. The world is full of coincidences with 1:200 chances of happening, 

and this could be just one of them. Under this explanation, Solar System gravities distribution 

could be outstanding indeed – but without any outstanding reasons behind it. 

2. An implicit case of data dredging / p-hacking ([130]). Given sufficiently many parameters, it is 

always possible to find some that would look unusual by a pre-selected metric. While I did not 

look for something that clusters, a mere act of eying many Solar System parameters could have 

drawn my attention to what appeared as the most interesting of them. 

Assumptions or simplifications that could have affected the results: 

1. Drawing test gravities from a log-uniform distribution 

2. The choice of clustering & linkage criteria 

3. The choice of clustering quality definitions (less likely as two different measures mostly agree on 

the conclusions) 

4. Averaging of polar and equatorial gravities to assign values for rapidly rotating bodies 

5. Somewhat arbitrary cutoff choice of g > 0.8 m/s2 for bodies to be considered 

Physical causes 

1. A manifestation of some relation between planetary density ρ and its radius R. Surface gravity is 

proportional to their product ρR. The pressure at the center of a body is (neglecting compression) 
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proportional to (ρR)2, or g2. So it seems that the product ρR is an important variable at least in 

some contexts. If there is a hidden non-trivial relationship between ρ and R, it could have 

manifested via clustering of their product distribution. 

2. Early Solar System conditions could’ve prevented formation of bodies with size/mass 

intermediate between those of Mars and Earth, or between Galilean satellites and Mars. Such 

bodies would have naturally filled the gaps between the gravity clusters. However, I am not aware 

of physical processes that would deterministically produce such a separation. 

3. Observation bias. Perhaps, bodies with intermediate gravities do exist in the Solar System – but 

we just have not discovered them yet. This hypothesis does not contradict gravity ranges derived 

from masses and radius values presented in [70] for putative Planet Nine. However, relatively low 

statistical confidence of the result (p ≈ 0.5%) precludes any serious discussion of this opportunity. 

Appendix 

For verification purposes, extrasolar planets surface gravities derived from [110] are listed here. 

Gravities of Kepler-11 system [110] 

Planet g, m/s2 

Kepler-11 b 5.88259646 

Kepler-11 c 3.53178836 

Kepler-11 d 7.52270685 

Kepler-11 e 5.44253482 

Kepler-11 f 3.23587523 

Kepler-11 g 224.899982 

 

Gravities of Kepler-20 system [110] 

Planet g, m/s2 

Kepler-20 b 27.8517062 

Kepler-20 c 13.78114129 

Kepler-20 d 13.78114129 

Kepler-20 e 41.30097452 

Kepler-20 f 142.6210825 

 

Gravities of Kepler-62 system [110] 

Planet g, m/s2 

Kepler-62 b 51.90503324 

Kepler-62 c 138.775 

Kepler-62 d 36.87884793 

Kepler-62 e 138.2854938 

Kepler-62 f 175.8226253 
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Gravities of Kepler-102 system [110] 

Planet g, m/s2 

Kepler-102 b 18.70113379 

Kepler-102 c 84.46153846 

Kepler-102 d 19.23846154 

Kepler-102 e 18.188593 

Kepler-102 f 8.132030123 

 

Gravities of 20 extrasolar planets known with 25% or better precision [110] 

Planet g, m/s2 g relative uncertainty 

CoRoT-31 b 9.792 0 

EPIC 219388192 b 1077.57791 0.184979608 

HATS-14 b 25.71540526 0.141480233 

HATS-22 b 78.1987406 0.236453945 

HD 209458 b 9.391304348 0.10149219 

K2-29 b 13.36176824 0.176946836 

Kepler-408 b 97.27903922 0.016438911 

Kepler-409 b 159.6354575 0.113389123 

Kepler-432 b 66.69545779 0.197982202 

WASP-102 b 10.20394541 0.19515109 

WASP-105 b 50.625 0.236681661 

WASP-118 b 6.425 0.178092195 

WASP-121 b 8.82325899 0.20375246 

WASP-130 b 40.24946345 0.200401153 

WASP-22 b 11.12453316 0.150385338 

WASP-41 b 17.49841999 0.208415995 

WASP-43 b 49.55561187 0.125543177 

WASP-84 b 20.2718163 0.174344049 

WASP-86 b 53.27751963 0.221707977 

WASP-93 b 14.93972143 0.233493476 

 

The data was filtered according to the following criteria:  

• publication_status == “Published in a refereed paper” | “Announced on a professional 

conference”; 

• planet_status == “Confirmed”; 

• detection_type == “Imaging” | ”Primary Transit”; 

• mass_detection_type == “Radial Velocity” | ”Spectrum”; 

• radius_detection_type == “Primary Transit” | “Flux”;  

• mass != “”;  

• radius != “”;  
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• (gmax – gmin)/g < 0.25, where gmax = G*(m + mass_error_max)/(r - radius_error_min)2, 

gmin = G*(m - mass_error_min)/(r + radius_error_max)2. 
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